Студопедия

Главная страница Случайная страница

КАТЕГОРИИ:

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






СЛАУ. Теорема Кронекера- Капелли. Ранг матрицы.






Система m линейных алгебраических уравнений с n неизвестными в линейной алгебре — это система уравненийвида

(1)

 

Система линейных уравнений от трёх переменных определяет наборплоскостей. Точка пересечения является решением.

Здесь — количество уравнений, а — количество неизвестных. x 1, x 2, …, xn — неизвестные, которые надо определить. a 11, a 12, …, amn — коэффициенты системы — и b 1, b 2, … bm — свободнье члены — предполагаются известными. Индексы коэффициентов (aij) системы обозначают номера уравнения (i) и неизвестного (j), при котором стоит этот коэффициент, соответственно.

Система (1) называется однородной, если все её свободные члены равны нулю (b 1 = b 2 = … = bm = 0), иначе — неоднородной.

Система (1) называется квадратной, если число m уравнений равно числу n неизвестных.

Решение системы (1) — совокупность n чисел c 1, c 2, …, cn, таких что подстановка каждого ci вместо xi в систему (1) обращает все её уравнения втождества.

Система (1) называется совместной, если она имеет хотя бы одно решение, и несовместной, если у неё нет ни одного решения.

Совместная система вида (1) может иметь одно или более решений.

Решения c 1(1), c 2(1), …, cn (1) и c 1(2), c 2(2), …, cn (2) совместной системы вида (1) называются различными, если нарушается хотя бы одно из равенств:

c 1(1) = c 1(2), c 2(1) = c 2(2), …, cn (1) = cn (2).

Совместная система вида (1) называется определённой, если она имеет единственное решение; если же у неё есть хотя бы два различных решения, то она называется недоопределённой. Если уравнений больше, чем неизвестных, она называется переопределённой.

Теорема Кронекера-Капелли - критерий совместности системы линейных алгебраических уравнений: система линейных алгебраических уравнений совместна тогда и только тогда, когда ранг ее основной матрицы равен рангу ее расширенной матрицы, причем система имеет единственное решение, если ранг равен числу неизвестных, и бесконечное множество решений, если ранг меньше числа неизвестных.

Рангом системы строк (столбцов) матрицы с строк и столбцов называется максимальное число линейно независимых строк (столбцов). Несколько строк (столбцов) называются линейно независимыми, если ни одна из них не выражается линейно через другие. Ранг системы строк всегда равен рангу системы столбцов, и это число называется рангом матрицы.

Ранг матрицы — наивысший из порядков миноров этой матрицы, определитель которых отличен от нуля.

 

Система уравнений разрешима тогда и только тогда, когда , где — расширенная матрица, полученная из матрицы приписыванием столбца .

Условия совместимости:

Пусть система совместна. Тогда существуют числа такие, что . Следовательно, столбец является линейной комбинацией столбцов матрицы . Из того что ранг матрицы не изменится, если из системы его строк (столбцов) вычеркнуть или приписать строку (столбец), которая является линейной комбинацией других строк (столбцов) следует, что .

 

Пусть . Возьмём в матрице какой-нибудь базисный минор. Так как , то он же будет базисным минором и матрицы . Тогда, согласно теореме о базисном миноре, последний столбец матрицы будет линейной комбинацией базисных столбцов, то есть столбцов матрицы . Следовательно, столбец свободных членов системы является линейной комбинацией столбцов матрицы .

Следствие

Количество главных переменных системы равно рангу системы.

Совместная система будет определена (её решение единственно), если ранг системы равен числу всех её переменных.


Поделиться с друзьями:

mylektsii.su - Мои Лекции - 2015-2025 год. (0.006 сек.)Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав Пожаловаться на материал