Главная страница Случайная страница КАТЕГОРИИ: АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Метод простой итерации
Для метода простой итерации (МПИ) уравнение (1.1) необходимо сначала преобразовать к виду . Это всегда можно сделать с помощью эквивалентных преобразований. Далее, выберем начальное приближение . Следующие итерации производятся по формуле: , т.е. , , и т.д. Если последовательность , сходится, то , то есть в пределе получаем искомое решение уравнения. Итерационный процесс следует остановить, когда . В качестве начального приближения обычно берут середину отрезка : . Привести исходное уравнение (1.1) к виду можно бесконечным числом способов. Из всевозможных функций j (x) выбирают ту, которая порождает сходящуюся к корню последовательность . Достаточное условие сходимости. Пусть имеет производную на отрезке , и для всех из отрезка . Тогда итерационный процесс сходится к корню уравнения, т.е. . Доказательство. Из формулы МПИ следует, что Применяя теорему Лагранжа о среднем, получим . Аналогично , и т.д. Следовательно, Так как , то и, следовательно, . Геометрическая интерпретация метода простой итерации представлена на рис. 1.4 для случаев (а), (б), (в) и (г).
|