Главная страница Случайная страница КАТЕГОРИИ: АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Метод обратной матрицы
Если , то существует матрица , обратная к данной. Умножим исходную систему уравнений (2.1) на обратную матрицу слева. Получим . Известно, что произведение обратной матрицы на исходную дает единичную матрицу , и, следовательно, получаем , или (2.3) Решение СЛАУ свелось к умножению известной обратной матрицы на вектор правых частей. Таким образом, задача решения СЛАУ и задача нахождения обратной матрицы связаны между собой, поэтому часто решение СЛАУ называют задачей обращения матрицы. Проблемы использования этого метода те же, что и при использовании метода Крамера: нахождение обратной матрицы – трудоемкая операция. Однако для небольших m решение может быть получено с помощью функций Excel. ПРИМЕР 2.3. С помощью метода обратной матрицы решить систему Занесем на рабочий лист Excel матрицу коэффициентов и вектор правых частей . Выделим на рабочем листе область размером ячейки для обратной матрицы и вызовем функцию МОБР. В поле Массив занесем адреса ячеек исходной матрицы A, и, нажав комбинацию клавиш Ctrl+Shift+Enter, получим A-1:
Полученную обратную матрицу умножим на вектор правых частей . Для этого выделим столбец из трех ячеек и вызовем функцию МУМНОЖ. В поля Массив 1 и Массив 2 занесем адреса ячеек, в которых находятся найденная обратная матрица и вектор правых частей, после чего, нажав комбинацию клавиш Ctrl+Shift+Enter, получим решение СЛАУ
Замечание. Если одна из клавиш Ctrl или Shift не нажата, вычисления будут выполнены не во всем выделенном диапазоне, а только в одной ячейке. В этом случае весь процесс вызова функции необходимо повторить.
|