Студопедия

Главная страница Случайная страница

КАТЕГОРИИ:

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Метод обратной матрицы






Если , то существует матрица , обратная к данной. Умножим исходную систему уравнений (2.1) на обратную матрицу слева. Получим

.

Известно, что произведение обратной матрицы на исходную дает единичную матрицу , и, следовательно, получаем , или

(2.3)

Решение СЛАУ свелось к умножению известной обратной матрицы на вектор правых частей. Таким образом, задача решения СЛАУ и задача нахождения обратной матрицы связаны между собой, поэтому часто решение СЛАУ называют задачей обращения матрицы. Проблемы использования этого метода те же, что и при использовании метода Крамера: нахождение обратной матрицы – трудоемкая операция. Однако для небольших m решение может быть получено с помощью функций Excel.

ПРИМЕР 2.3. С помощью метода обратной матрицы решить систему

Занесем на рабочий лист Excel матрицу коэффициентов

и вектор правых частей .

Выделим на рабочем листе область размером ячейки для обратной матрицы и вызовем функцию МОБР. В поле Массив занесем адреса ячеек исходной матрицы A, и, нажав комбинацию клавиш Ctrl+Shift+Enter, получим A-1:

0.195489 -0.16541 -0.02256
-0.1015 0.278195 -0.00752
-0.07895 0.105263 0.105263

Полученную обратную матрицу умножим на вектор правых частей . Для этого выделим столбец из трех ячеек и вызовем функцию МУМНОЖ. В поля Массив 1 и Массив 2 занесем адреса ячеек, в которых находятся найденная обратная матрица и вектор правых частей, после чего, нажав комбинацию клавиш Ctrl+Shift+Enter, получим решение СЛАУ

1.037594
0.345865
0.157895

Замечание. Если одна из клавиш Ctrl или Shift не нажата, вычисления будут выполнены не во всем выделенном диапазоне, а только в одной ячейке. В этом случае весь процесс вызова функции необходимо повторить.


Поделиться с друзьями:

mylektsii.su - Мои Лекции - 2015-2024 год. (0.005 сек.)Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав Пожаловаться на материал