Главная страница Случайная страница КАТЕГОРИИ: АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Метод простой итерации. Преобразуем исходную систему линейных уравнений к эквивалентной системе вида:
Преобразуем исходную систему линейных уравнений к эквивалентной системе вида: , (2.8) где – искомый вектор, а и – некоторые новые матрица и вектор, соответственно. Будем решать (2.8) методом последовательных приближений. В качестве нулевого приближения можно взять . Следующее приближение находим по рекуррентным формулам (2.9) Такой итерационный процесс будем называть методом простых итераций (МПИ). Так же, как и в случае МПИ для решения нелинейных алгебраических уравнений, метод (2.9) сходится не для любой матрицы . Достаточным условием сходимости МПИ (2.9) к решению системы (2.8) при любом начальном векторе является требование , где – норма матрицы . Существует несколько способов построения порождающей матрицы , для которой выполняется достаточное условие сходимости.
|