Студопедия

Главная страница Случайная страница

КАТЕГОРИИ:

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Постановка задачи. Требуется найти решение системы линейных уравнений, которая в общем виде записывается в виде






Требуется найти решение системы линейных уравнений, которая в общем виде записывается в виде

. (2.1)

В матричном виде эта система уравнений записывается как:

(2.1¢)

где - матрица системы, - вектор правых частей, - вектор неизвестных.

Таким образом, задача состоит в том, чтобы при известных коэффициентах матрицы и элементах вектора найти такие значения , что при подстановке их в систему уравнений (2.1) они превращаются в тождества.

Необходимым и достаточным условием существования единственного решения СЛАУ является условие , т.е. определитель матрицы не равен нулю. В случае равенства нулю определителя матрица называется вырожденной и при этом СЛАУ (2.1) либо не имеет решения, либо имеет их бесчисленное множество. В дальнейшем мы будем предполагать наличие единственного решения.

Все методы решения линейных алгебраических задач можно разбить на два класса: прямые (точные) и итерационные (приближенные).


Поделиться с друзьями:

mylektsii.su - Мои Лекции - 2015-2024 год. (0.005 сек.)Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав Пожаловаться на материал