Главная страница Случайная страница КАТЕГОРИИ: АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Метод Гаусса
Наиболее известным и популярным прямым методом решения СЛАУ является метод Гаусса. Этот метод заключается в последовательном исключении неизвестных. Метод состоит из двух этапов. На первом (прямом) этапе исходная система сводится к системе с треугольной матрицей, которая решается на втором (обратном) этапе. На прямом этапе используются следующие эквивалентные преобразования строк расширенной матрицы системы: перестановка строк, умножение строки на ненулевую константу, сложение строк. Прямой этап. Пусть в системе уравнений
первый элемент
Если
Обратный этап. Решаем систему (2.4) с верхней треугольной матрицей в обратном порядке:
В случае если один из ведущих элементов равен нулю, изложенный алгоритм метода Гаусса неприменим. Кроме того, если какие-либо ведущие элементы малы, то это приводит к усилению ошибок округления и ухудшению точности счета. Поэтому обычно используется другой вариант метода Гаусса – схема Гаусса с выбором главного элемента. Путем перестановки строк и других эквивалентных преобразований добиваются выполнения условия: ПРИМЕР 2.4. Рассмотрим применение метода Гаусса с выбором главного элемента на примере следующей системы уравнений:
В первом уравнении коэффициент при
В третьем уравнении коэффициент при
Рассмотрим второе и третье уравнения. Исключим
Далее находим значения
Такая перестановка уравнений необходима для того, чтобы уменьшить влияние ошибок округления на конечный результат. Часто возникает необходимость в решении СЛАУ, матрицы которых являются слабо заполненными, т.е. содержат много нулевых элементов. В то же время эти матрицы имеют определенную структуру. Среди таких систем выделим системы с матрицами ленточной структуры, в которых ненулевые элементы располагаются на главной диагонали и на нескольких побочных диагоналях. Для решения систем с ленточными матрицами коэффициентов вместо метода Гаусса можно использовать более эффективные методы. Для случая трехдиагональных матриц разработан экономичный метод прогонки.
|