Главная страница Случайная страница КАТЕГОРИИ: АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Метрические пространства.
Метри́ ческим простра́ нством называется множество, в котором определено расстояние между любой парой элементов. На одном и том же множестве могут быть заданы различные функции расстояния, или, что тоже самое, метрики: каждая метрика задаёт своё метрическое пространство. Каждое нормированное или евклидовое пространство является в то же время и метрическим пространством, поскольку заданные в них норма и скалярное произведение порождают соответствующую им функции расстояния. Всякое метрическое пространство является вместе с тем и топологическим пространством, в частности, метрическое пространство является хаусдорфовым пространством — топологическим пространством, в котором любые две различные точки отделимы друг от друга. Важнейшая часть исследований в общей топологии посвящена решению вопроса о метризуемости тех или иных топологических пространств. Особое место среди метрических пространств занимают полные метрические пространства, в которых сходится каждая фундаментальная последовательность. Метрическое пространство есть упорядоченная пара , где — множество элементов (точек) произвольной природы, а — числовая функция, которая определена на декартовом произведении , принимает значения в множестве вещественных чисел и удовлетворяет трём аксиомам — аксиомам метрического пространства — и, в соответствии с этим называется функцией расстояния или метрикой. Каждая метрика порождает на одном и том же множестве своё метрическое пространство: вообще говоря, и — различные метрические пространства для .
|