Студопедия

Главная страница Случайная страница

КАТЕГОРИИ:

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Методические указания. Функциональной зависимостью называется такая взаимосвязь одной или нескольких независимых переменных величин с некоторой






 

Функциональной зависимостью называется такая взаимосвязь одной или нескольких независимых переменных величин с некоторой, зависимой от них, переменной величиной, при которой каждому значению независимых переменных соответствует строго определенное значение этой зависимой переменной.

Математическое выражение, устанавливающее вид взаимосвязи зависимой переменной с независимой, называется функцией и обозначается строчной латинской буквой f. Независимая переменная называется аргументом функции, и, как правило, обозначается строчной латинской буквой х, а зависимая переменная – у.

Например, . Здесь функцией является выражение . Если , то функция имеет вид .

Производной функции называется выражение, характеризующее быстроту изменения функции при изменении ее аргумента. Например, если мы имеем функцию , то, очевидно, быстрота ее изменения равна 5, то есть изменение аргумента на единицу приводит к изменению значения функции на 5 единиц. (, а ).

В общем случае производная функции определяется как предел отношения приращения функции к приращениюее аргумента . Очевидно, что если , то , и .

Производная функции обозначается штрихом около символа функции . Таким образом, согласно определению

 

.

 

Рассмотрим например нахождение производной степенной функции.

Пусть . Тогда, согласно определению,

 

.

 

Для устранения неопределенности раскроем скобки в числителе

 

 

Отсюда следует общая формула производной степенной функции . Нахождение производной функции называется дифференцированием.

 


Поделиться с друзьями:

mylektsii.su - Мои Лекции - 2015-2025 год. (0.006 сек.)Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав Пожаловаться на материал