Студопедия

Главная страница Случайная страница

КАТЕГОРИИ:

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Теорема 2. Похідна алгебраїчної суми скінченної кількості диференційованих функцій дорівнює алгебраїчній сумі похідних цих функцій: .






Теорема 3. Похідна добутку двох диференційованих функцій дорівнює добутку першого множника на похідну другого плюс добуток другого множника на похідну першого:

.

Теорема 4. Сталий множник можна виносити за знак похідної:

Де.

Теорема 5. Якщо чисельник і знаменник дробу диференційовані функції (знаменник не перетворюється в нуль), то похідна дробу також дорівнює дробу, чисельник якого є різницею добутків знаменника на похідну чисельника і чисельника на похідну знаменника, а знаменник є квадратом знаменника початкового дробу.

Зауваження. Похідну від функції , де , зручно обчислювати як похідну від добутку сталої величини на функцію u (x):

.

Приклад. Обчислити похідну для функції у = tg x.

Таким чином, .

Похідна складної функції. Нехай у = f (u), де , тобто . Функція f (u) називається зовнішньою, а функція внутрішньою, або проміжним аргументом.

Теорема 6. Якщо у = f (u) та — диференційовані функції від своїх аргументів, то похідна складної функції існує і дорівнює .

Таким чином, похідна складної функції дорівнює добутку похідної зовнішньої функції за проміжним аргументом на похідну проміжного аргументу за незалежною змінною.

Похідна неявної функції. Нехай рівняння F (x; y) = 0 визначає у як неявну функцію від х. Надалі будем вважати, що ця функція — диференційована.

Продиференціювавши за х обидві частини рівняння F (x; y) = 0, дістанемо рівняння першого степеня відносно . З цього рівняння легко знайти , тобто похідну неявної функції.

Приклад. Знайти з рівняння .

Оскільки у є функцією від х, то у 2 розглядатимемо як складну функцію від х, тобто .

Продиференціювавши по х обидві частини заданого рівняння, дістанемо . Звідси .

Похідна оберненої функції. Нехай задані дві взаємно обернені диференційовні функції

у = f (х) та .


Поделиться с друзьями:

mylektsii.su - Мои Лекции - 2015-2025 год. (0.006 сек.)Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав Пожаловаться на материал