Определение
Предположим, что кривая C задана векторной функцией, где переменная s − длина дуги кривой. Тогда производная векторной функции
представляет собой единичный вектор, направленный вдоль касательной к данной кривой (рисунок 1). В приведенной выше формуле α, β и γ − углы между касательной и положительными направлениями осейO x, O y и O z, соответственно.
| |
| Рис.1
| | Рис.2
| Введем векторную функцию , определенную на кривой C, так, чтобы для скалярной функции
существовал криволинейный интеграл . Такой интеграл называется криволинейным интегралом второго рода от векторной функции вдоль кривой C и обозначается как
Таким образом, по определению,
где − единичный вектор касательной к кривой C. Последнюю формулу можно переписать также в векторной форме:
где . Если кривая C лежит в плоскости O xy, то полагая R = 0, получаем
Свойства криволинейного интеграла второго рода
Криволинейный интеграл II рода обладает следующими свойствами:
1. Пусть C обозначает кривую с началом в точке A и конечной точкой B. Обозначим через − C кривую противоположного направления - от B к A. Тогда
2. Если C − объединение кривых C 1 и C 2 (рисунок 2 выше), то
3. Если кривая C задана параметрически в виде , то
4. Если кривая C лежит в плоскости O xy и задана уравнением (предполагается, что R = 0и t = x), то последняя формула записывается в виде
|