Главная страница Случайная страница КАТЕГОРИИ: АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Г). Коефіцієнт детермінації.
Коефіцієнт детермінації використовується як критерій адекватності (відповідності) моделі статистичним даним, оскільки він є мірою пояснювальної сили незалежних змінних і показує, яка частина варіації залежної змінної пояснюється саме варіацією (зміною) незалежних змінних, а не іншими випадковими факторами, які акумулюються у стохастичній складовій моделі. Іншими словами, коефіцієнт детермінації показує наскільки значним є вплив пояснюючих змінних моделі на залежну. Якщо цей вплив є значним, то побудована модель дійсно описує лінійну залежність між відповідними економічними показниками і ця залежність є суттєвою. Якщо ж цей вплив є незначним модель є неадекватною статистичним даним і лінійна регресійна залежність між економічними показниками у ній є достатньо сумнівною і неякісною. P Суть коефіцієнта детермінації і його застосування у якості критерію адекватності можна пояснити на основі дисперсійного аналізу загальної лінійної моделі. Докладно дисперсійний аналіз загальної лінійної регресії і його зв'язок з коефіцієнтом детермінації наведено у [12, с.53-57, с.60-63, с.180-184], [15, с.111-112]. При вивчені цього питання також необхідно розібратися з такими елементами дисперсійного аналізу як SST, SSR, SSE, MSR і MSE, а також з напрямками їх застосування.
Позначається коефіцієнт детермінації через R2 і обчислюється за наступною залежністю:
Зазначимо також, що коефіцієнт детермінації може обчислюватися і за іншими формулами. Так у математичній статистиці доведено, що коефіцієнт детермінації і коефіцієнт множинної (парної) кореляції пов’язані наступним співвідношенням:
Таким чином у практичних розрахунках достатньо обчислити тільки коефіцієнт кореляції, а значення коефіцієнта детермінації обчислюється на основі співвідношення (34) або (35). Як видно з виразів (33), (34) і (35) коефіцієнт детермінації завжди є додатною величиною і може змінювати своє значення у межах від 0 до 1, тобто
Чим більше значення коефіцієнта детермінації (чим ближче воно до 1) тим більш вагомим і систематичним є вплив пояснюючих змінних на залежну і тим більше підстав стверджувати, що саме зміною значень пояснюючих змінних пояснюється змінна значення залежної змінної моделі, а не іншими випадковими і неврахованими у моделі випадковими факторами. Іншими словами високе, близьке до 1 значення коефіцієнта детермінації свідчить про високий рівень адекватності оціненої моделі статистичним даним. І навпаки, чим менше значення коефіцієнта детермінації (чим ближче воно до 0) тим менш вагомим є вплив пояснюючих змінних на залежну і тим менше підстав стверджувати, що саме зміною значень пояснюючих змінних пояснюється змінна значення залежної змінної моделі, а не іншими випадковими і неврахованими у моделі випадковими факторами. Іншими словами низьке, близьке до 0 значення коефіцієнта детермінації свідчить про низький рівень адекватності оціненої моделі статистичним даним. У граничному випадку, коли Як інтерпретується значення коефіцієнта детермінації? Нехай для деякої вибіркової моделі коефіцієнт детермінації дорівнює
|