Студопедия

Главная страница Случайная страница

КАТЕГОРИИ:

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Численные методы решения задачи Коши






Пусть дана задача Коши

.

Методы решения задачи Коши можно разделить на:

1.Точные методы – методы, позволяющие выписать решение задачи в виде элементарных функций или интегралов от элементарных функций (квадратурах).

2.Приближенные методы – методы, которые позволяют найти точное решение как предел последовательности некоторой функции , каждая из которых выписывается через элементарные функции.

3.Численные методы – методы, позволяющие сформулировать алгоритм нахождения решения задачи Коши и оценить погрешность полученного решения.

Задача может быть решена численными методами при условии, что решение существует, и задача хорошо обусловлена (малые изменения начального условия не приводит к значительному изменению результата).

 

Метод сеток. Основные понятия и определения.

Рассматриваемые далее численные методы решения задачи Коши относятся к классу сеточных (разностных) методов, основанных на замене области изменения аргумента искомой функции дискретным множеством узлов сетки, а производной в дифференциальном уравнении ее дискретными аналогами – разностными производными, которые получают из разложения решения в ряд Тейлора (в предположении надлежащей дифференцируемости решения)

Определение. Сеткой на отрезке называется любое упорядоченное множество точек этого отрезка . Величина , , называется шагом сетки.

Определение. Сетка называется равномерной, если .

Функции , определенные лишь в узлах сетки , называются сеточными.

Определение. Разностными производными функции в точке называются выражения вида , , (центральная), где . Указанные разностные производные представляют собой простейшие дискретные аналоги производной в дифференциальном уравнении.

В основе построения конкретного сеточного метода лежит тот или иной способ замены дифференциального уравнения его дискретным аналогом – уравнением вида

, (4)

где – значения сеточной функции в последовательных точках . Сумма в левой части уравнения (4) рассматривается как разностная аппроксимация производной по одной из формул численного дифференцирования, а правая часть – как специальным образом построенная аппроксимация функции .

При нахождении приближения в очередной точке сетки из уравнения (4) используются найденные ранее значения сеточной функции в предыдущих точках. Такие методы называются -шаговыми. При уравнение (4) принимает вид . Соответствующий этому уравнению метод называется одношаговым. Вычисление осуществляется здесь с использованием только одного предыдущего значения .

В случае, когда входящая в уравнение функция не зависит от , метод называется явным, так как вычисление осуществляется по явной формуле (предполагается, что )

.

Если же зависит от , то на каждом шаге приходится решать нелинейное уравнение (4) относительно . Методы, реализующие такой алгоритм, называются неявными.


Поделиться с друзьями:

mylektsii.su - Мои Лекции - 2015-2025 год. (0.006 сек.)Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав Пожаловаться на материал