Главная страница Случайная страница КАТЕГОРИИ: АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
При решении задач постоянно встречается необходимость замены одной функции некоторой другой функцией .
Условно такого рода задачи можно разделить на два типа: 1).Вид связи между параметрами и не известен, но эта связь задана в виде таблицы , т.е. дискретному множеству значений аргумента поставлено в соответствие множество значений функции . Но при выполнении расчетов требуются и другие значения . Эта цель достигается решением задачи о приближении (аппроксимации) функций: данную функцию требуется приближенно заменить (аппроксимировать) некоторой функцией так, чтобы отклонение от в заданной области было наименьшим. Функция при этом называется аппроксимирующей. Для практики весьма важен случай аппроксимации ф-ций многочленами вида (6.1) В дальнейшем для аппроксимации будут рассматриваться лишь такие функции. 2). Вид связи известен. Например, . Очевидно, что при ручном счете могут быть использованы таблицы, где с определенной погрешностью приведены значения . Но при машинном счете ввод таблиц требует больших затрат памяти. Поэтому для вычисления значений функций на ЭВМ используются разложения этих функций в степенные ряды. Например, функция вычисляется с помощью ряда (6.2). Если приближение строится на заданном дискретном множестве точек , то аппроксимация называется точечной. При построении приближения на непрерывном множестве точек аппроксимация называется непрерывной. 6.1 Точечная аппроксимация. Одним из основных типов точечной аппроксимации является интерполирование. Оно состоит в следующем: для данной функции строим многочлен (6.1), принимающий в заданных точках те же значения , что и функция , т. е. (6.3) При этом предполагается, что среди значений нет одинаковых, т.е. xi ≠ xk при . Точки называются узлами интерполяции, а многочлен - интерполяционным многочленом. Максимальная степень интерполяционного многочлена равна . В этом случае мы имеем дело с глобальной интерполяцией, поскольку один многочлен используется для интерполяции функции на всем интервале изменения аргумента . Коэффициенты находятся из системы уравнений 6.3. Если интерполяционные многочлены построить отдельно для разных частей рассматриваемого интервала изменения , то получим кусочную (или локальную) интерполяцию. Если интерполяционные многочлены используются для приближенного вычисления функции вне рассматриваемого отрезка , то такое приближение называют экстраполяцией. Кроме интерполирования, где требуется выполнение условий возможны и другие виды аппроксимации. Например, в случае глобальной интерполяции при большом количестве узлов интерполяции получается высокая степень многочлена (6.1). В этом случае можно пойти другим путем: выбирается многочлен меньшей степени, график которого проходит близко от данных точек (штриховая линия на рис.6.1).
Рис. 6.1. К вопросу об экстраполяции.
6.1.1. Одним из таких видов является среднеквадратичное приближение функций с помощью многочлена. При этом ; случай соответствует интерполяции. На практике стараются подобрать многочлен как можно меньшей степени (как правило, . Мерой отклонения многочлена от заданной функции на множестве точек при среднеквадратичном приближении является величина , равная сумме квадратов разностей между значениями многочлена и функции в данных точках: (6.4) Для построения аппроксимирующего многочлена нужно подобрать коэффициенты так, чтобы величина была наименьшей. В этом состоит метод наименьших квадратов.
|