Студопедия

Главная страница Случайная страница

КАТЕГОРИИ:

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Определение. Определителем (или детерминантом) третьего порядка, соответствующим данной матрице, называется число






Определителем (или детерминантом) третьего порядка, соответствующим данной матрице, называется число, вычисляемое по правилу:

a11a22a33+a21a23a31-a12a23a31-a13a22a31-a12a21a33-a11a23a32.

Определитель третьего порядка записывается так:

При вычислении определителей третьего порядка удобно пользоваться правилом треугольников (правилом Сарруса). Это правило проиллюстрируем на схеме:

Еще один способ вычисления определителя третьего порядка, следует из правила треугольников:

Три положительных члена определителя представляют собой произведение элементов главной диагонали (a11a22a33) и элементов, находящихся в вершинах двух равнобедренных треугольников, основания которых параллельны главной диагонали (a12a23a31 и a21a31a13). Три отрицательных его члена есть произведения элементов, побочной диагонали (a13a22a31) и элементов, находящихся в вершинах двух равнобедренных треугольников, основания которых параллельны побочной диагонали (a12a21a33 и a11a23a32).


Поделиться с друзьями:

mylektsii.su - Мои Лекции - 2015-2025 год. (0.005 сек.)Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав Пожаловаться на материал