Студопедия

Главная страница Случайная страница

КАТЕГОРИИ:

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Проверка гипотезы о равенстве средних двух совокупностей при неизвестных дисперсиях.






При неизвестных генеральных дисперсиях и , но они равны, т.е. , то в качестве неизвестной величины можно взять ее оценку – «исправленную» выборочную дисперсию:

или .

Однако лучшей оценкой дисперсии разности независимых выборочных средних будет дисперсия смешанной совокупности :

.

В этом случае критерий вычисляем по выражению:

.

Доказано, что в случае критерий имеет распределение Стьюдента с степенями свободы. Поэтому критическое значение критерия находится в зависимости от типа критической области по функции распределения Стьюдента, т.е. .

При этом сохраняется тоже правило принятия гипотезы: гипотеза отвергается на уровне значимости , если и принимается, если , т.е. с надежностью можно считать расхождение средних значений незначимым.

В случае невозможности наложения допущения о равенстве генеральных дисперсий задача не имеет точного решения (пока) – это проблема Беренса-Фишера.

Рассмотренные критерии можно применять для исключения грубых ошибок при проведении наблюдений.

Например, если в ряде наблюдений , - резко отличается, то справедливость гипотезы : о принадлежности к остальным наблюдениям проверяем по критерию:

,

где - средняя арифметическая, -«исправленное» среднее квадратическое отклонении ряда наблюдений . При справедливости критерий должен подчиняться так же закону распределения Стьюдента со степенью свободы . При конкурирующей гипотезе или , т.е. является ли резко выделяющееся значение меньше или больше остальных наблюдений находится по функции распределения Стьюдента при условии, что . Если , то гипотеза принимается. При условии , гипотеза отвергается.


Поделиться с друзьями:

mylektsii.su - Мои Лекции - 2015-2025 год. (0.006 сек.)Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав Пожаловаться на материал