Студопедия

Главная страница Случайная страница

КАТЕГОРИИ:

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Проверка гипотезы о равенстве средних двух совокупностей при известных дисперсиях.






Имеются две генеральные совокупности и с известными дисперсиями и . Необходимо проверит гипотезу о равенстве генеральных средних, т.е. : . Для проверки этой гипотезы взяты две независимые выборки объемами и , по которым найдены средние арифметические и . В качестве критерия принимаем нормированную разность между и :

.

Поскольку , то критерий при известных генеральных дисперсиях будет равен:

При выполнении гипотезы критерий при больших объемах выборок или при малых, при условии, что генеральные совокупности и подчиняются нормальному закону, так же будет подчиняться нормальному закону с нулевым математическим ожиданием и единичной дисперсией. Поэтому, например, при конкурирующей гипотезе, выбирают двухстороннюю критическую область. Критическое значение критерия выбираем из условия:

.

Если фактически наблюдаемое значение критерия по абсолютному значению больше критического , определенного на уровне значимости , т.е. , то гипотеза отвергается.

Если , то делаем вывод, что нулевая гипотеза не противоречит имеющимся наблюдениям.


Поделиться с друзьями:

mylektsii.su - Мои Лекции - 2015-2025 год. (0.005 сек.)Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав Пожаловаться на материал