Главная страница Случайная страница КАТЕГОРИИ: АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Проверка гипотезы о равенстве средних двух совокупностей при известных дисперсиях.
Имеются две генеральные совокупности и с известными дисперсиями и . Необходимо проверит гипотезу о равенстве генеральных средних, т.е. : . Для проверки этой гипотезы взяты две независимые выборки объемами и , по которым найдены средние арифметические и . В качестве критерия принимаем нормированную разность между и : . Поскольку , то критерий при известных генеральных дисперсиях будет равен: При выполнении гипотезы критерий при больших объемах выборок или при малых, при условии, что генеральные совокупности и подчиняются нормальному закону, так же будет подчиняться нормальному закону с нулевым математическим ожиданием и единичной дисперсией. Поэтому, например, при конкурирующей гипотезе, выбирают двухстороннюю критическую область. Критическое значение критерия выбираем из условия: . Если фактически наблюдаемое значение критерия по абсолютному значению больше критического , определенного на уровне значимости , т.е. , то гипотеза отвергается. Если , то делаем вывод, что нулевая гипотеза не противоречит имеющимся наблюдениям.
|