Студопедия

Главная страница Случайная страница

КАТЕГОРИИ:

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Дальше не надо






 

Пример 1. Линейная модель рынка.

Методологию моделирования рынка проведем в три этапа: постановка задачи, построение модели вида (5.3.1)-(5.3.5) и непосредственно моделирование.

Постановка задачи.

Дано. На объем производства и соответственно продаж оказывают влияние:

· производственные возможности производителей: a 1 =a 2=400 - затраты на производство продукта у обоих производителей, b 1 =b 2=150000 - финансовые возможности фирм при производстве продукта;

· цены на выпускаемый продукт фиксированы cq =500, q =1, 2;

· финансовые возможности (бюджетные ограничения) потребителей: b =100000, b =300000, " lÎ L – минимальный и максимальный объем финансовых средств, в рамках которого они может осуществлять покупки продукта от разных фирм. Максимальная цена, которую в состоянии оплатить потребители, cmax =800.

Построить математическую модель рынка на основе оптимизационной задачи (5.3.1)-(5.3.5) и решить ее.

Построение модели рынка. Обозначим: x1, x2 – вектор переменных, характеризующий объемы продукции, произведенные первым и вторым производителем соответственно. Так как цены на выпускаемый продукт фиксированы, то это позволяет рассматривать задачу (5.3.1)-(5.3.5) как линейную.

С учетом введенных обозначений математическая модель рынка (5.3.1)-(5.3.5) может быть представлена в виде векторной задачи линейного програм мирования:

opt F (X) = { max f 1(X) = p 1 x 1 + p 2 x 2 ,

min f 2(X) = p 1 x 1 + p 2 x 2},

при ограничениях b ≤ p 1 x 1 + p 2 x 2 ≤ b , a 1 x 1 ≤ b 1, a 2 x 2 ≤ b 2, x 1, x 2³ 0,

или в числовом виде: pq =500, aq =400, p q=pq - aq =100, bq =150000, q =1, 2, b =100000, b =300000

opt F (X)={ max f 1(X) = 100 x 1 + 100 x 2 ,

min f 2(X) = 500 x 1 + 500 x 2 , (5.3.9)

при ограничениях 100000≤ 500 x 1+500 x 2≤ 300000, (5.3.10)

400 x 1≤ 150000, 400 x 2≤ 150000, x 1, x 2 ³ 0. (5.3.11)

где (5.3.9) - критерии производителей, максимизирующих свои прибыли; и критерии потребителей, минимизирующие свои затраты; (5.3.10) - ограничения по финансовым возможностям потребителя при приобретении первого и второго товара; (5.3.11) – ограничения по производственным мощностям при производстве двух товаров.

Для решения векторной задачи (5.3.9)-(5.3.11) использован алгоритм, основанный на нормализации критериев и принципе гарантированного результата при равнозначных критериях. На каждом шаге алгоритма используется симплексный алгоритм, представленный в системе Matlab.

Шаг 1, 2. Решается задача (5.3.9)-(5.3.11) по каждому критерию отдельно (наилучшее, наихудшее). В результате решения получим:

X ={ x 1=300, x 2=300}, f = f 1(X )=60000,

X ={ x 1=100, x 2=100}, f = f 1(X )=20000;

X ={ x 1=100, x 2=100}, f = f 2(X )=100000,

X ={ x 1=300, x 2=300}, f = f 2(X )=300000.

Шаг 3. Выполняется стандартная нормализация критериев и анализ результатов решения, полученных по каждому критерию.

fk (X ) =[ f 1(X )=60000, f 2(X )=300000;

f 1(X )=20000, f 2(X )=100000].

l k (X ) =[l1(X )=1.0, l2(X )=0.0; l1(X )=0.0, l2(X )=1.0].

Шаг 5. Построение l-задачи:

lo= max l, (5.3.12)

l - £ 0, (5.3.13)

l - £ 0, (5.3.14)

100000≤ 500 x 1+500 x 2 ≤ 300000, (5.3.15)

400 x 1≤ 150000, 400 x 2≤ 150000, x 1, x 2³ 0. (5.3.16)

Шаг 4. Решение l-задачи (5.3.12)-(5.3.16). lo = 0.5,

Xo ={ x 1=0.4999, x 2=373.73, x 3=26.31}. f 1(Xo)=40000, f 2(Xo)=200020. l1(Xo)=0.4999, l2(X0)=0.5001, т. е. выполняются условия l o ≤ lk(Xo), k =1, 2.

В терминах стоимостей финансовые затраты производителей и потребителей равны между собой:

få q (X) = (pql+aql) x =få l (X) = pqxql,

- предложение равно спросу.

 


Поделиться с друзьями:

mylektsii.su - Мои Лекции - 2015-2024 год. (0.009 сек.)Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав Пожаловаться на материал