Главная страница Случайная страница КАТЕГОРИИ: АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Метод наименьших квадратов
Если набор экспериментальных данных получен со значительной погрешностью, то интерполяция не только не требуется, но и нежелательна! Здесь требуется построить кривую, которая воспроизводила бы график исходной экспериментальной закономерности, т.е. была бы максимально близка к экспериментальным точкам, но в то же время была бы нечувствительна к случайным отклонениям измеряемой величины. Введем непрерывную функцию φ (x) для аппроксимации дискретной зависимости f(x i ), i = 0… n. Будем считать, что φ (x) построена по условию наилучшего квадратичного приближения, если . (1) Весу ρ для i -й точки придают смысл точности измерения данного значения: чем больше ρ, тем ближе аппроксимирующая кривая «притягивается» к данной точке. В дальнейшем будем по умолчанию полагать ρ = 1 для всех точек. Рассмотрим случай линейной аппроксимации: φ (x) = c0φ 0(x) + c1φ 1(x) + … + cmφ m(x), (2) где φ 0…φ m – произвольные базисные функции, c0…cm – неизвестные коэффициенты, m < n. Если число коэффициентов аппроксимации взять равным числу узлов, то среднеквадратичная аппроксимация совпадет с интерполяцией Лагранжа, при этом, если не учитывать вычислительную погрешность, Q = 0. Если известна экспериментальная (исходная) погрешность данных ξ, то выбор числа коэффициентов, то есть величины m, определяется условием: (3) Иными словами, если , число коэффициентов аппроксимации недостаточно для правильного воспроизведения графика экспериментальной зависимости. Если , многие коэффициенты в (2) не будут иметь физического смысла. Для решения задачи линейной аппроксимации в общем случае следует найти условия минимума суммы квадратов отклонений для (2). Задачу на поиск минимума можно свести к задаче поиска корня системы уравнений , k = 0… m. (4). Подстановка (2) в (1), а затем расчет (4) приведет в итоге к следующей системе линейных алгебраических уравнений: Далее следует решить полученную СЛАУ относительно коэффициентов c0…cm. Для решения СЛАУ обычно составляется расширенная матрица коэффициентов, которую называют матрицей Грама, элементами которой являются скалярные произведения базисных функций и столбец свободных коэффициентов: , где , , j = 0… m, k = 0… m. После того как с помощью, например, метода Гаусса найдены коэффициенты c0…cm, можно построить аппроксимирующую кривую или вычислить координаты заданной точки. Таким образом, задача аппроксимации решена
|