Главная страница Случайная страница КАТЕГОРИИ: АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Компакт.Критерии компакта.
Определение: Множество E называется компактом, если из любой последовательности точек этого множества можно выделить подпоследовательность, сходящуюся в точке из этого же множества Теорема (критерий компактов): Для того чтобы множество E было компактом необходимо и достаточно чтобы оно было замкнутым и ограниченным. Доказательство: Пусть E – компакт. Ограниченность: Пусть Е – неограниченно сверху, тогда , значит из нее нельзя выделить подпоследовательность сходящуюся в точке из Е, отсюда следует что Е – не компакт, получим противоречие, значит Е – ограниченно Замкнутость: т.к. Е – не компакт, то можно выделить из последовательности подпоследовательность , которая будет сходится в какой нибудь точке из множества Е, с другой стороны т.к. - предел всей последовательности , получается взяв любую предельную точку для Е, получается что Е – замкнутое
Е – замкнуто и ограниченно , т.к. Е ограниченно ограниченно по лемме Б.Б. из нее можно выделить сходящуюся подпоследовательность, но учитывая, что Е – замкнутое по критерию замкнутости
|