Главная страница Случайная страница КАТЕГОРИИ: АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Преобразование Фурье
Преобразование Фурье является отображением, широко используемым в теории сигналов. Если - множество сигналов с ограниченной энергией , то преобразование Фурье есть отображение в другое множество функций с интегрируемым квадратом . Отображение задается следующим образом: . (1.1.9) Рис. 1.4. Две функции, имеющие одно и то же преобразование Фурье. Если подходить строго, то это отображение не взаимно-однозначное, т.к. может существовать две и более функций времени, таких, как показано на рис. 1.4., для которых преобразование Фурье одинаково. Ясно, что - это отображение «многих в одно». Множество эквивалентности, определяемое преобразованием , содержит функции времени, отличающиеся лишь на конечном множестве точек в любом интервале времени. Такие разрывные сигналы не имеют практического значения, поэтому обычно рассматривают множество эквивалентности как один сигнал. Эта эквивалентность означает равенство почти всюду, и мы не будем различать сигналы и соответствующие им множества эквивалентности, определяемые равенством «почти всюду». Т. е. будем считать, что взаимно-однозначное отображение. Обратное отображение задается соотношением: . (1.1.10) Соотношения (1.1.9) и (1.1.10), взятые вместе, называются парой преобразований Фурье.
|